Find A^-1:

    ┌       ┐

    │ 1 2 2 │

A = │ 2 0 1 │

    │ 2 2 0 │

    └       ┘

 

To manually find the inverse of a 3x3 matrix, there are 5 major steps plus an optional check step where the original matrix "A" is multiplied by the inverse "A^-1" that should result in the Indentity matrix "I".

 

The identity matrix will have a single diagonal of 3 ones, starting left to right and top to bottom, with all other elements = 0:

 

    ┌       ┐

    │ 1 0 0 │

I = │ 0 1 0 │

    │ 0 0 1 │

    └       ┘

 

Overview of steps:

 

 1. Derive the determinant Det(A) and its inverse Det(A)^-1

    of the given matrix "A".

 

  1.1 Apply 6 masks to "A".

 

  1.2 Collect diagonal coefficients

 

 2. Construct minor of "A" (Am) from the determinat of

    minors (mx) of "A".

 

 3. Construct cofactor matrix (Acf) from polarity

    mapping matrix (Map) applied to Am.

 

 4. Construct adjugate Aadj from the transpose of Acf.

 

 5. Multiply Det(A)^-1 to each element in Aadj to complete A^-1.

 

•6.

 

1. Compute Det(A):

 

 Statistics:

 

  Special Setups:          6

 

  Multiplications:        12

 

  Additions/Subtractions:  5

 

  Other:                   1

 

 1.1: Use the following 6 element maskings [•] to "A" to isolate the elements of interest:

    ┌           ┐ ┌           ┐ ┌           ┐ ┌           ┐ ┌           ┐ ┌           ┐

    │ 1   2   2 │ │ 1   2   2 │ │ 1   2   2 │ │ 1   2   2 │ │ 1   2   2 │ │ 1   2   2 │

    │           │ │           │ │           │ │           │ │           │ │           │

    │ 2   0   1 │ │ 2   0   1 │ │ 2   0   1 │ │ 2   0   1 │ │ 2   0   1 │ │ 2   0   1 │

    │           │ │           │ │           │ │           │ │           │ │           │

    │ 2   2   0 │ │ 2   2   0 │ │ 2   2   0 │ │ 2   2   0 │ │ 2   2   0 │ │ 2   2   0 │

    └           ┘ └           ┘ └           ┘ └           ┘ └           ┘ └           ┘

    ┌           ┐ ┌           ┐ ┌           ┐ ┌           ┐ ┌           ┐ ┌           ┐

    │ 1   •   • │ │ •   •   2 │ │ •   2   • │ │ 1   •   • │ │ •   •   2 │ │ •   2   • │

    │   •       │ │       •   │ │       •   │ │           │ │           │ │   •       │

    │ •   0   • │-│ •   0   • │+│ • • •   1 │-│ • • •   1 │+│ 2   • • • │-│ 2   • • • │

    │       •   │ │   •       │ │           │ │       •   │ │   •       │ │           │

    │ •   •   0 │ │ 2   •   • │ │ 2   •   • │ │ •   2   • │ │ •   2   • │ │ •   •   0 │

    └           ┘ └           ┘ └           ┘ └           ┘ └           ┘ └           ┘

      ↓ ↓ ↓ ↓ ↓  ↓  ↓ ↓ ↓ ↓ ↓  ↓  ↓ ↓ ↓ ↓ ↓  ↓  ↓ ↓ ↓ ↓ ↓  ↓  ↓ ↓ ↓ ↓ ↓  ↓  ↓ ↓ ↓ ↓ ↓

1.2:  1 • 0 • 0  -  2 • 0 • 2  +  2 • 2 • 1  -  1 • 2 • 1  +  2 • 2 • 2  -  2 • 2 • 0

      │   ║   │     │   ║   │     │   ║   │     │   ║   │     │   ║   │     │   ║   │

      └───╫───┘  ↓  └───╫───┘  ↓  └───╫───┘  ↓  └───╫───┘  ↓  └───╫───┘  ↓  └───╫───┘

          0      -      0      +      4      -      2      +      8      -      0

          │             │             │             │             │             │

          └──────╥──────┘      ↓      └──────╥──────┘      ↓      └──────╥──────┘  

                 0             +             2             +             8

                 │                           ║                           │

                 └───────────────────────────╫───────────────────────────┘

                                       Det = 10

 

An alternate method of setting up for determinate processing is:

 

Take first two columns of original matrix and juxtapose them

just to the right, then add an additional original with the

new copied rows:

    ┌           ┐       ┌           ┐

    │ 1   2   2 │ 1   2 │ 1   2   2 │ 1   2

    │           │       │           │

    │ 2   0   1 │ 2   0 │ 2   0   1 │ 2   0

    │           │       │           │

    │ 2   2   0 │ 2   2 │ 2   2   0 │ 2   2

    └           ┘       └           ┘

 

Map and isolate as follows:

 

    ┌           ┐       ┌           ┐

    │ 1   2   2 │ 1   2 │ 1   2   2 │ 1   2

    │           │       │           │

    │ 2   0   1 │ 2   0 │ 2   0   1 │ 2   0

    │           │       │           │

    │ 2   2   0 │ 2   2 │ 2   2   0 │ 2   2

    └           ┘       └           ┘

    ┌           ┐       ┌           ┐

    │ 1   •   • │ •   • │ •   •   2 │ •   •

    │   •       │       │       •   │

    │ •   0   • │ •   • │ •   0   • │ •   •

    │       •   │       │   •       │

    │ •   •   0 │ •   • │ 2   •   • │ •   •

    └           ┘       └           ┘

      ↓ ↓ ↓ ↓ ↓           ↓ ↓ ↓ ↓ ↓

      1 • 0 • 0     -     2 • 0 • 2

      │   ║   │           │   ║   │

      └───╫───┘     ↓     └───╫───┘

          0         -         0

          │                   │

          └─────────╥─────────┘

            Xdia1 = 0

 

Process all 3 pair of "X" diagonals (Xdiax)

    ┌           ┐       ┌           ┐

    │ 1   2   2 │ 1   2 │ 1   2   2 │ 1   2

    │           │       │           │

    │ 2   0   1 │ 2   0 │ 2   0   1 │ 2   0

    │           │       │           │

    │ 2   2   0 │ 2   2 │ 2   2   0 │ 2   2

    └           ┘       └           ┘

    ┌           ┐       ┌           ┐

    │ •   2   • │ •   • │ •   •   • │ 1   •

    │       •   │       │           •

    │ •   •   1 │ •   • │ •   •   1 │ •   •

    │           •       │       •   │

    │ •   •   • │ 2   • │ •   2   • │ •   •

    └           ┘       └           ┘

          ↓ ↓ ↓ ↓ ↓           ↓ ↓ ↓ ↓ ↓

          2 • 1 • 2     -     2 • 1 • 1

          │   ║   │           │   ║   │

          └───╫───┘     ↓     └───╫───┘

              4         -         2

              │                   │

              └─────────╥─────────┘

                Xdia2 = 2

 

    ┌           ┐       ┌           ┐

    │ 1   2   2 │ 1   2 │ 1   2   2 │ 1   2

    │           │       │           │

    │ 2   0   1 │ 2   0 │ 2   0   1 │ 2   0

    │           │       │           │

    │ 2   2   0 │ 2   2 │ 2   2   0 │ 2   2

    └           ┘       └           ┘

    ┌           ┐       ┌           ┐

    │ •   •   2 │ •   • │ •   •   • │ •   2

    │           •       │           │   •

    │ •   •   • │ 2   • │ •   •   • │ 2   •

    │           │   •   │           •

    │ •   •   • │ •   2 │ •   •   0 │ •   •

    └           ┘       └           ┘

              ↓ ↓ ↓ ↓ ↓           ↓ ↓ ↓ ↓ ↓

              2 • 2 • 2     -     0 • 2 • 2

              │   ║   │           │   ║   │

              └───╫───┘     ↓     └───╫───┘

                  8         -         0

                  │                   │

                  └─────────╥─────────┘

                    Xdia3 = 8

 

Det(A) = Xdia1 + Xdia2 + Xdia3 = 0 + 2 + 8 = 10

 

1.3: Det^-1 = 1/Det(A) = 1/10 = 0.1

 

2 Construct Am from the 9 minors from A' of A:

 

 Statistics:

 

  Special Setups:          9 Apply 9 unique maskings [•••](A') to A to isolate minors.

 

  Multiplications:        18

 

  Additions/Subtractions:  9

 

  Other:                  18 Compute determinant Det(mx) for each 9 minors, Move Det(mx) to Am

 

 

Theory of operation:

 

Select Element RxCy:

      ┌                   ┐

      │ [a.a]  b.b   c.c  │

      │                   │

  A = │  d.d   e.e   f.f  │

      │                   │

      │  g.g   h.h   i.i  │

      └                   ┘

Mask Rx & Cy:

      ┌                   ┐                Minor x of 9

      │ [•••]  •••   •••  │

      │                   │

 A' = │  •••   e.e   f.f  │

      │                   │

      │  •••   h.h   i.i  │

      └                   ┘

 

Explanation of Mapping:

 

For each selected element [a.a],[b.b],...,[i.i] in "A", the corresponding Row(x) and Column(y) Rx&Cy will be masked.

 

The remaining four unmasked elements will then be transferred to the new 2x2 minor matrix:

 

      ┌             ┐

      │  e.e   f.f  │

 mx = │             │

      │  h.h   i.i  │

      └             ┘

Mask and compute the determinant of the new minor:

      ┌             ┐ ┌             ┐

      │  e.e   f.f  │ │  e.e   f.f  │

      │             │ │             │

      │  h.h   i.i  │ │  h.h   i.i  │

      └             ┘ └             ┘

      ┌             ┐ ┌             ┐

      │  e.e   •••  │ │  •••   f.f  │

      │      •      │-│      •      │

      │  •••   i.i  │ │  h.h   •••  │

      └             ┘ └             ┘

          ↓  ↓  ↓    ↓    ↓  ↓  ↓

         e.e • i.i   -   h.h • f.f

          └──╥──┘    ↓    └──╥──┘

            n.n      -      n.n

             └───────╥───────┘

         Det(mx) = [n.n] → AmRxCx

 

For the selected element [   ] above, the determinate of the 2x2 minor will then be inserted into the corresponding location determined above. This will be sequentially done for all 9 elements until Am is fully populated.

 

      ┌                   ┐

      │ [n.n]  x.x   x.x  │

      │                   │

 Am = │  x.x   x.x   x.x  │

      │                   │

      │  x.x   x.x   x.x  │

      └                   ┘

 

 

Begin Am construction:

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R1C1:                           ░░ Minor 1 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │[-2.0] -2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░  A = │  2.0   0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R1&C1 based on selected element R1C1:                     ░░

░░      ┌                   ┐                                     ░░

░░      │ [•••]  •••   •••  │                                     ░░

░░      │                   │                                     ░░

░░ A' = │  •••   0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  •••   2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░                ↓     ↓                                         ░░

░░            ┌             ┐                                     ░░

░░            │  0.0   1.0  │                                     ░░

░░       m1 = │             │                                     ░░

░░            │  2.0   0.0  │                                     ░░

░░            └             ┘                                     ░░

░░ Mask m1 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  0.0   1.0  │ │  0.0   1.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  2.0   0.0  │ │  2.0   0.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  0.0   •••  │ │  •••   1.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   0.0  │ │  2.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         0.0 • 0.0   -   2.0 • 1.0                              ░░

░░          └──╥──┘    ↓    └──╥──┘                               ░░

░░            0.0      -      2.0                                 ░░

░░             └───────╥───────┘                                  ░░

░░        Det(m1) = [-2.0] → AmR1C1                               ░░

░░             ┌───────┘                                          ░░

░░      ┌      │            ┐                                     ░░

░░      │[-2.0]┘ x.x   x.x  │                                     ░░

░░      │                   │                                     ░░

░░ Am = │  x.x   x.x   x.x  │                                     ░░

░░      │                   │                                     ░░

░░      │  x.x   x.x   x.x  │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R1C2:                           ░░ Minor 2 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │ -2.0 [-2.0]  2.0  │                                     ░░

░░      │                   │                                     ░░

░░  A = │  2.0   0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R1&C2 based on selected element R1C2:                     ░░

░░      ┌                   ┐                                     ░░

░░      │  •••  [•••]  •••  │                                     ░░

░░      │                   │                                     ░░

░░ A' = │  2.0   •••   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   •••   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░          ↓           ↓                                         ░░

░░      ┌                   ┐                                     ░░

░░      │  2.0         1.0  │                                     ░░

░░ m2 = │                   │                                     ░░

░░      │  2.0         0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask m2 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  2.0   1.0  │ │  2.0   1.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  2.0   0.0  │ │  2.0   0.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  2.0   •••  │ │  •••   1.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   0.0  │ │  2.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         2.0 • 0.0   -   2.0 • 1.0                              ░░

░░          └──╥──┘    ↓    └──╥──┘                               ░░

░░            0.0      -      2.0                                 ░░

░░             └───────╥───────┘                                  ░░

░░         Det(m2) = [2.0] → AmR1C2                               ░░

░░                   ┌─┘                                          ░░

░░      ┌            │      ┐                                     ░░

░░      │ -2.0 [-2.0]┘ x.x  │                                     ░░

░░      │                   │                                     ░░

░░ Am = │  x.x   x.x   x.x  │                                     ░░

░░      │                   │                                     ░░

░░      │  x.x   x.x   x.x  │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R1C3:                           ░░ Minor 3 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │ -2.0  -2.0  [2.0] │                                     ░░

░░      │                   │                                     ░░

░░  A = │  2.0   0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R1&C3 based on selected element R1C3:                     ░░

░░      ┌                   ┐                                     ░░

░░      │  •••   •••  [•••] │                                     ░░

░░      │                   │                                     ░░

░░ A' = │  2.0   0.0   •••  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0   •••  │                                     ░░

░░      └                   ┘                                     ░░

░░          ↓     ↓                                               ░░

░░      ┌             ┐                                           ░░

░░      │  2.0   0.0  │                                           ░░

░░ m3 = │             │                                           ░░

░░      │  2.0   2.0  │                                           ░░

░░      └             ┘                                           ░░

░░ Mask m3 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  2.0   0.0  │ │  2.0   0.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  2.0   2.0  │ │  2.0   2.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  2.0   •••  │ │  •••   0.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   2.0  │ │  2.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         2.0 • 2.0   -   2.0 • 0.0                              ░░

░░          └──╥──┘    ↓    └──╥──┘                               ░░

░░            4.0      -      0.0                                 ░░

░░             └───────╥───────┘                                  ░░

░░         Det(m3) = [4.0] → AmR1C3                               ░░

░░                   ┌─┘                                          ░░

░░      ┌            │      ┐                                     ░░

░░      │ -2.0  -2.0 └[4.0] │                                     ░░

░░      │                   │                                     ░░

░░ Am = │  x.x   x.x   x.x  │                                     ░░

░░      │                   │                                     ░░

░░      │  x.x   x.x   x.x  │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R2C1:                           ░░ Minor 4 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │ -2.0  -2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░  A = │ [2.0]  0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R2&C1 based on selected element R2C1:                     ░░

░░      ┌                   ┐                                     ░░

░░      │  •••   2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░ A' = │ [•••]  •••   •••  │                                     ░░

░░      │                   │                                     ░░

░░      │  •••   2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░                ↓     ↓                                         ░░

░░            ┌             ┐                                     ░░

░░            │  2.0   2.0  │                                     ░░

░░       m4 = │             │                                     ░░

░░            │  2.0   0.0  │                                     ░░

░░            └             ┘                                     ░░

░░ Mask m4 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  2.0   2.0  │ │  2.0   2.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  2.0   0.0  │ │  2.0   0.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  2.0   •••  │ │  •••   2.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   0.0  │ │  2.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         2.0 • 0.0   -   2.0 • 2.0                              ░░

░░          └──╥──┘    ↓    └──╥──┘                               ░░

░░            0.0      -      4.0                                 ░░

░░             └───────╥───────┘                                  ░░

░░        Det(m4) = [-4.0] → AmR2C1                               ░░

░░             ┌───────┘                                          ░░

░░      ┌      │            ┐                                     ░░

░░      │ -2.0 │-2.0   4.0  │                                     ░░

░░      │      │            │                                     ░░

░░ Am = │[-4.0]┘ x.x   x.x  │                                     ░░

░░      │                   │                                     ░░

░░      │  x.x   x.x   x.x  │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R2C2:                           ░░ Minor 5 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │ -2.0  -2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░  A = │  2.0  [0.0]  1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R2&C2 based on selected element R2C2:                     ░░

░░      ┌                   ┐                                     ░░

░░      │  1.0   •••   2.0  │                                     ░░

░░      │                   │                                     ░░

░░ A' = │  •••  [•••]  •••  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   •••   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░          ↓           ↓                                         ░░

░░      ┌                   ┐                                     ░░

░░      │  1.0         2.0  │                                     ░░

░░ m5 = │                   │                                     ░░

░░      │  2.0         0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask m5 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   2.0  │ │  1.0   2.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  2.0   0.0  │ │  2.0   0.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   •••  │ │  •••   2.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   0.0  │ │  2.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         1.0 • 0.0   -   2.0 • 2.0                              ░░

░░          └──╥──┘    ↓    └──╥──┘                               ░░

░░            0.0      -      4.0                                 ░░

░░             └───────╥───────┘                                  ░░

░░        Det(m5) = [-4.0] → AmR2C2                               ░░

░░                   ┌─┘                                          ░░

░░      ┌            │      ┐                                     ░░

░░      │ -2.0  -2.0 │ 4.0  │                                     ░░

░░      │            │      │                                     ░░

░░ Am = │ -4.0 [-4.0]┘ x.x  │                                     ░░

░░      │                   │                                     ░░

░░      │  x.x   x.x   x.x  │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R2C3:                           ░░ Minor 6 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │ -2.0  -2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░  A = │  2.0   0.0  [1.0] │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R2&C3 based on selected element R2C3:                     ░░

░░      ┌                   ┐                                     ░░

░░      │  1.0   2.0   •••  │                                     ░░

░░      │                   │                                     ░░

░░ A' = │  •••   •••  [•••] │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0   •••  │                                     ░░

░░      └                   ┘                                     ░░

░░          ↓     ↓                                               ░░

░░      ┌             ┐                                           ░░

░░      │  1.0   2.0  │                                           ░░

░░ m6 = │             │                                           ░░

░░      │  2.0   2.0  │                                           ░░

░░      └             ┘                                           ░░

░░ Mask m6 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   2.0  │ │  1.0   2.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  2.0   2.0  │ │  2.0   2.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   •••  │ │  •••   2.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   2.0  │ │  2.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         1.0 • 2.0   -   2.0 • 2.0                              ░░

░░          └──╥──┘    ↓    └──╥──┘                               ░░

░░            2.0      -      4.0                                 ░░

░░             └───────╥───────┘                                  ░░

░░        Det(m6) = [-2.0] → AmR2C3                               ░░

░░                  ┌──┘                                          ░░

░░      ┌           │       ┐                                     ░░

░░      │ -2.0  -2.0│  4.0  │                                     ░░

░░      │           │       │                                     ░░

░░ Am = │ -4.0  -4.0└[-2.0] │                                     ░░

░░      │                   │                                     ░░

░░      │  x.x   x.x   x.x  │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R3C1:                           ░░ Minor 7 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │ -2.0  -2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░  A = │  2.0   0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │ [2.0]  2.0   0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R3&C1 based on selected element R3C1:                     ░░

░░      ┌                   ┐                                     ░░

░░      │  •••   2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░ A' = │  •••   0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │ [•••]  •••   •••  │                                     ░░

░░      └                   ┘                                     ░░

░░                ↓     ↓                                         ░░

░░            ┌             ┐                                     ░░

░░            │  2.0   2.0  │                                     ░░

░░       m7 = │             │                                     ░░

░░            │  0.0   1.0  │                                     ░░

░░            └             ┘                                     ░░

░░ Mask m7 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  2.0   2.0  │ │  2.0   2.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  0.0   1.0  │ │  0.0   1.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   •••  │ │  •••   2.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   2.0  │ │  0.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         1.0 • 2.0   -   0.0 • 2.0                              ░░

░░          └──╥──┘    ↓    └──╥──┘                               ░░

░░            2.0      -      0.0                                 ░░

░░             └───────╥───────┘                                  ░░

░░         Det(m7) = [2.0] → AmR3C1                               ░░

░░             ┌───────┘                                          ░░

░░      ┌      │            ┐                                     ░░

░░      │ -2.0 │-2.0   4.0  │                                     ░░

░░      │      │            │                                     ░░

░░ Am = │ -4.0 │-4.0  -2.0  │                                     ░░

░░      │      │            │                                     ░░

░░      │ [2.0]┘ x.x   x.x  │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R3C2:                           ░░ Minor 8 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │ -2.0  -2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░  A = │  2.0   0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0  [2.0]  0.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R3&C2 based on selected element R3C2:                     ░░

░░      ┌                   ┐                                     ░░

░░      │  1.0   •••   2.0  │                                     ░░

░░      │                   │                                     ░░

░░ A' = │  2.0   •••   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  •••  [•••]  •••  │                                     ░░

░░      └                   ┘                                     ░░

░░          ↓           ↓                                         ░░

░░      ┌                   ┐                                     ░░

░░      │  1.0         2.0  │                                     ░░

░░ m8 = │                   │                                     ░░

░░      │  2.0         1.0  │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask m8 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   2.0  │ │  1.0   2.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  2.0   1.0  │ │  2.0   1.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   •••  │ │  •••   2.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   1.0  │ │  2.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         1.0 • 1.0   -   2.0 • 2.0                              ░░

░░          └──╥──┘    ↓    └──╥──┘                               ░░

░░            1.0      -      4.0                                 ░░

░░             └───────╥───────┘                                  ░░

░░        Det(m8) = [-3.0] → AmR3C2                               ░░

░░                   ┌─┘                                          ░░

░░      ┌            │      ┐                                     ░░

░░      │ -2.0  -2.0 │ 4.0  │                                     ░░

░░      │            │      │                                     ░░

░░ Am = │ -4.0  -4.0 │-2.0  │                                     ░░

░░      │            │      │                                     ░░

░░      │  2.0 [-3.0]┘ x.x  │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

░░ Select Element R3C3:                           ░░ Minor 9 of 9 ░░

░░      ┌                   ┐                     ░░░░░░░░░░░░░░░░░░

░░      │ -2.0  -2.0   2.0  │                                     ░░

░░      │                   │                                     ░░

░░  A = │  2.0   0.0   1.0  │                                     ░░

░░      │                   │                                     ░░

░░      │  2.0   2.0  [0.0] │                                     ░░

░░      └                   ┘                                     ░░

░░ Mask R3&C3 based on selected element R3C3:                     ░░

░░      ┌                   ┐                                     ░░

░░      │  1.0   2.0   •••  │                                     ░░

░░      │                   │                                     ░░

░░ A' = │  2.0   0.0   •••  │                                     ░░

░░      │                   │                                     ░░

░░      │  •••   •••  [•••] │                                     ░░

░░      └                   ┘                                     ░░

░░          ↓     ↓                                               ░░

░░      ┌            ┐                                            ░░

░░      │  1.0   2.0 │                                            ░░

░░ m9 = │            │                                            ░░

░░      │  2.0   0.0 │                                            ░░

░░      └            ┘                                            ░░

░░ Mask m9 for determinant computation:                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   2.0  │ │  1.0   2.0  │                           ░░

░░      │             │ │             │                           ░░

░░      │  2.0   0.0  │ │  2.0   0.0  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░      ┌             ┐ ┌             ┐                           ░░

░░      │  1.0   •••  │ │  •••   2.0  │                           ░░

░░      │      •      │-│      •      │                           ░░

░░      │  •••   0.0  │ │  2.0   •••  │                           ░░

░░      └             ┘ └             ┘                           ░░

░░          ↓  ↓  ↓    ↓    ↓  ↓  ↓                               ░░

░░         1.0 • 0.0   -   2.0 • 2.0                              ░░

░░          └──┬──┘    ↓    └──┬──┘                               ░░

░░            0.0      -      4.0                                 ░░

░░             └───────┬───────┘                                  ░░

░░        Det(m9) = [-4.0] → AmR3C3                               ░░

░░                  ┌──┘                                          ░░

░░      ┌           │       ┐                                     ░░

░░      │ -2.0  -2.0│  4.0  │                                     ░░

░░      │           │       │                                     ░░

░░ Am = │ -4.0  -4.0│ -2.0  │Am Complete!                         ░░

░░      │           │       │                                     ░░

░░      │  2.0  -3.0└[-4.0] │                                     ░░

░░      └                   ┘                                     ░░

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

 

3. Acf = AmR(i)C(j) • MapR(i)C(j)

 

 Statistics:

 

  Special Setups:          1 Apply polarity mask (Map).

 

  Multiplications:         9

 

  Additions/Subtractions:  0

 

  Other:                   0

 

 

           ┌                        ┐

           │ x.x• 1  x.x•-1  x.x• 1 │

           │                        │

     Map = │ x.x•-1  x.x• 1  x.x•-1 │

           │                        │

           │ x.x• 1  x.x•-1  x.x• 1 │

           └                        ┘

           ┌                        ┐ ┌               ┐

           │-2.0• 1 -2.0•-1  4.0• 1 │ │-2.0  2.0  4.0 │

           │                        │ │               │

  Am•Map = │-4.0•-1 -4.0• 1 -2.0•-1 │=│ 4.0 -4.0  2.0 │Acf Complete!

           │                        │ │               │

           │ 2.0• 1 -3.0•-1 -4.0• 1 │ │ 2.0  3.0 -4.0 │

           └                        ┘ └               ┘

 

4. Aadj = Acf^T:

 

 Statistics:

 

  Special Setups:          0

 

  Multiplications:         0

 

  Additions/Subtractions:  0

 

  Other:                   9 Isolate Row(n) of Acf, transpose to Column(n), place into Aadj.

 

Select R1:

          ┌                ┐T

          │[-2.0  2.0  4.0]│

          │                │

    Acf = │  4.0 -4.0  2.0 │

          │                │

          │  2.0  3.0 -4.0 │

          └                ┘

Transpose:

          ┌                ┐

  AcfR1 = │ -2.0  2.0  4.0 │ → AadjC1

          └                ┘

              │    │    │

          ┌      ┐ │    │

          │ -2.0 │ │    │

          │      │ │    │

 AadjC1 = │  2.0 │─┘    │

          │      │      │

          │  4.0 │──────┘

          └      ┘

Insert:       ↓

          ┌                ┐

          │ -2.0  x.x  x.x │

          │                │

   Aadj = │  2.0  x.x  x.x │

          │                │

          │  4.0  x.x  x.x │

          └                ┘

Select R2:

          ┌                ┐

          │ -2.0  2.0  4.0 │

          │                │

    Acf = │ [4.0 -4.0  2.0]│

          │                │

          │  2.0  3.0 -4.0 │

          └                ┘

Transpose:

          ┌                ┐

   AcfR2 =│  4.0 -4.0  2.0 │ → AadjC2

          └                ┘

              │    └───┐│

              │ ┌     ┐││

              └─│ 4.0 │││

                │     │││

       AadjC2 = │-4.0 │┘│

                │     │ │

                │ 2.0 │─┘

                └     ┘

Insert:            ↓

          ┌                ┐

          │ -2.0  4.0  x.x │

          │                │

   Aadj = │  2.0 -4.0  x.x │

          │                │

          │  4.0  2.0  x.x │

          └                ┘

Select R3:

          ┌                ┐

          │ -2.0  2.0  4.0 │

          │                │

    Acf = │  4.0 -4.0  2.0 │

          │                │

          │ [2.0  3.0 -4.0]│

          └                ┘

Transpose:

          ┌                ┐

  AcfR3 = │  2.0  3.0 -4.0 │ → AadjC3

          └                ┘

              │    │    └───┐

              │    │ ┌     ┐│

              └────┼─│ 2.0 ││

                   │ │     ││

          AadjC3 = └─│ 3.0 ││

                     │     ││

                     │-4.0 │┘

                     └     ┘

Insert:                 ↓

          ┌                ┐

          │ -2.0  4.0  2.0 │

          │                │

   Aadj = │  2.0 -4.0  3.0 │Aadj Complete!

          │                │

          │  4.0  2.0 -4.0 │

          └                ┘

 

5. A^-1 = Aadj•det(A)^-1:

 

 Statistics:

 

  Special Setups:          0

 

  Multiplications:         9

 

  Additions/Subtractions:  0

 

  Other:                   0

 

 

Det(A)^-1 (idt) = 1/10 = 0.1 (From Step 1 above)

                  ┌                           ┐

                  │ x.x•idt  x.x•idt  x.x•idt │

                  │                           │

Aadj •Det(A)^-1 = │ x.x•idt  x.x•idt  x.x•idt │

                  │                           │

                  │ x.x•idt  x.x•idt  x.x•idt │

                  └                           ┘

 

           ┌               ┐ ┌                           ┐ ┌               ┐

           │-2.0  4.0  2.0 │ │-2.0•0.1  4.0•0.1  2.0•0.1 │ │-0.2  0.4  0.2 │

           │               │ │                           │ │               │

A^-1 = 0.1•│ 2.0 -4.0  3.0 │=│ 2.0•0.1 -4.0•0.1  3.0•0.1 │=│ 0.2 -0.4  0.3 │A^-1 Complete!

           │               │ │                           │ │               │

           │ 4.0  2.0 -4.0 │ │ 4.0•0.1  2.0•0.1 -4.0•0.1 │ │ 0.4  0.2 -0.4 │

           └               ┘ └                           ┘ └               ┘

 

•6. A•A^-1:

 

Generic operation template:

 

 ┌         ┐ ┌         ┐ ┌                                                   ┐

 │ a  b  c │ │ j  k  l │ │[a•j + b•m + c•p][a•k + b•n + c•q][a•l + b•o + c•r]│

 │         │ │         │ │                                                   │

 │ d  e  f │•│ m  n  o │=│[d•j + e•m + f•p][d•k + e•n + f•q][d•l + e•o + f•r]│

 │         │ │         │ │                                                   │

 │ g  h  i │ │ p  q  r │ │[g•j + h•m + i•p][g•k + h•n + i•q][g•l + h•o + i•r]│

 └         ┘ └         ┘ └                                                   ┘

 

         A               A^-1

 ┌               ┐ ┌               ┐

 │  a    b    c  │ │  j    k    l  │

 │ 1.0  2.0  2.0 │ │-0.2  0.4  0.2 │

 │               │ │               │

 │  d    e    f  │ │  m    n    o  │

 │ 2.0  0.0  1.0 │•│ 0.2 -0.4  0.3 │=

 │               │ │               │

 │  g    h    i  │ │  p    q    r  │

 │ 2.0  2.0  0.0 │ │ 0.4  0.2 -0.4 │

 └               ┘ └               ┘

 

                                            A•A^-1

 ┌                                                                                          ┐

 │[ a •  j  +  b • m  +  c • p ][ a • k  +  b •  n  +  c • q ][ a • l  +  b • o  +  c •  r ]│

 │[1.0•-0.2 + 2.0•0.2 + 2.0•0.4][1.0•0.4 + 2.0•-0.4 + 2.0•0.2][1.0•0.2 + 2.0•0.3 + 2.0•-0.4]│

 │                                                                                          │

 │[ d •  j  +  e • m  +  f • p ][ d • k  +  e •  n  +  f • q ][ d • l  +  e • o  +  f •  r ]│

=│[2.0•-0.2 + 0.0•0.2 + 1.0•0.4][2.0•0.4 + 0.0•-0.4 + 1.0•0.2][2.0•0.2 + 0.0•0.3 + 1.0•-0.4]│

 │                                                                                          │

 │[ g •  j  +  h • m  +  i • p ][ g • k  +  h •  n  +  i • q ][ g • l  +  h • o  +  i •  r ]│

 │[2.0•-0.2 + 2.0•0.2 + 0.0•0.4][2.0•0.4 + 2.0•-0.4 + 0.0•0.2][2.0•0.2 + 2.0•0.3 + 0.0•-0.4]│

 └                                                                                          ┘

                          A•A^-1

 ┌                                                    ┐

 │[-0.2 + 0.4 + 0.8][0.4 - 0.8 + 0.4][0.2 + 0.6 - 0.8]│

 │                                                    │

=│[-0.4 + 0.0 + 0.4][0.8 + 0.0 + 0.2][0.4 + 0.0 - 0.4]│

 │                                                    │

 │[-0.4 + 0.4 + 0.0][0.8 - 0.8 + 0.0][0.4 + 0.6 + 0.0]│

 └                                                    ┘

 

     A•A^-1 = I

 ┌               ┐

 │ 1.0  0.0  0.0 │

 │               │

=│ 0.0  1.0  0.0 │COMPLETE!!!

 │               │

 │ 0.0  0.0  1.0 │

 └               ┘